
Table Inheritance
Jim Nasby, Lead Database Architect
Enova Financial

REAL inheritance - none of that
silly partitioning stuff!

• What	
 is	
 inheritance?
• What's	
 the	
 alterna?ve?
• ProblemsChallenges
• Inheritance	
 framework
• Metacode

3

Overview

What is it?

Think object-oriented inheritance applied to a
table.

CREATE TABLE parent(
 a int NOT NULL
 , b int CHECK(b > 0)
);
CREATE TABLE child(
 c int
) INHERITS(parent);

What is it?

5

\d child

 Column | Type | Modifiers
--------+---------+-----------
 a | integer | not null
 b | integer |
 c | integer |
Check constraints:
 "parent_b_check" CHECK (b > 0)
Inherits: parent

What is it?

6

Inheritance deals with data as well as table
structure

INSERT INTO child VALUES(1, 2, 3);
SELECT * FROM parent;

 a | b
---+---
 1 | 2
(1 row)

Data

7

SELECT * FROM ONLY parent;

 a | b
---+---
(0 rows)

Data

8

INSERT INTO parent VALUES(8, 9);
 a | b
---+---
 8 | 9
 1 | 2
(2 rows)

Data

9

SELECT * FROM child;
 a | b
---+---
 1 | 2
(1 row)

Data

10

Real World:
Storing customer account

information

Customers have different accounts for
sending and receiving money:

• Bank
• Debit / Credit card
• Paycard

Customer Accounts

12

Some attributes are common across all
these different types of accounts

• account_id
• customer_id
• account_status_id

Customer Accounts

13

Some attributes are unique to specific
types of accounts

• routing_number / account_number
• card_token

Customer Accounts

14

Your database doesn't have
inheritance?

How can you reconcile the different fields?

• One table, lots of null fields (single-table
inheritance)

– customer_id NOT NULL
– routing_number NULL
– account_number NULL
– card_token NULL

Customer Accounts

16

Master table for common stuff referenced
by other tables for detailed stuff

SELECT …
 FROM customer_account c
 JOIN bank_account b

USING(account_id)

Customer Accounts

17

Inheritance gives the best of both worlds!

CREATE TABLE customer_account(...);

CREATE TABLE bank_account(...)
 INHERITS(customer_account);

CREATE TABLE debit_card(...)
 INHERITS(customer_account);

Use inheritance!

18

• customer_account has common fields
• bank_account and debit_card have common

and specific fields
• Data is only stored once (in the child table)
• Which table you select from depends on

what you're trying to do... is it something
generic or is it specific?

– List of customer accounts
– Send money to customer

Inheritance

19

Problems

^$&#(@%*!
I know it was too easy!

You can't use a parent table as the target
of a foreign key

• This works:
ALTER TABLE child ADD FOREIGN KEY
• So does this:
ALTER TABLE foo FOREIGN KEY child
• This does not:
ALTER TABLE foo FOREIGN KEY parent

Problems

22

You can't create a cross-table unique
constraint (so you can't create a
PRIMARY KEY)

Problems

23

There's a lot of things that don't carry over
from a parent to a child

• Check and not null constraints carry
• Foreign key constraints do not
• Triggers do not

Also, sometimes you don't want a
constraint to carry to all children

Problems

24

Primary / Foreign Keys

Luckily, it's easypossible to re-create the
foreign key infrastructure using user-
created triggers:

• Trigger on referenced table to deal with
updates and deletes

• Trigger on referring table to take a share
lock on referenced record

Primary / Foreign Keys

26

Unfortunately, inheritance makes this more
difficult...

• You can't easily create a trigger on a
parent and all it's children (though, we
created a framework that makes that
easier)

• You can't SHARE LOCK via the parent
table

ERROR: SELECT FOR UPDATE/SHARE is
not supported for inheritance queries

Primary / Foreign Keys

27

There are two ways to deal with the share
lock issue:

• Brute-force: try locking the needed row in
every child table

• Smart: have a method of knowing exactly
what table a child row exists in

Primary / Foreign Keys

28

All of our parent tables have some kind of
“type” field that identifies what child table
each record belongs to:

• payment_instrument_type_id
• transfer_method_id

Primary / Foreign Keys

29

We use that type field to find the
appropriate child table:

SELECT INTO v_table_name table_name
 FROM payment_instrument_types
 WHERE payment_instrument_type_id =

(SELECT payment_instrument_type_id
 FROM payment_instruments
 WHERE payment_instrument_id =
 NEW.payment_instrument_id)

Primary / Foreign Keys

30

And then we grab a share lock:

EXECUTE 'SELECT 1 FROM ' ||
v_table_name || ' WHERE id = ' ||
NEW.payment_instrument_id || ' FOR
SHARE';

Primary / Foreign Keys

31

Primary keys are a serious problem:

• In a btree unique index, the index
insertion code locks an internal
structure to ensure that no duplicate
entries can be created

• The only way we could emulate that in
userspace would be to have a single
master table that had all the IDs and a
unique index... but that's a lot of
overhead

Primary / Foreign Keys

32

Instead, we have a trigger that fakes a unique
constraint:

• Disallow deletes
• Disallow changing the ID field
• On insert assert WHERE NOT EXISTS()
• All ID fields are driven by a single sequence

There are race conditions a mile-wide in this
scheme!

Primary / Foreign Keys

33

Clear as mud?

Inheritance Framework

Who wants to manually add things every
time you create a new child table?

• I hate typing
• I'm lazy
• I'm forgetful
• I have better things to do with my time

(beer)

Inheritance Framework

36

Our “inheritance framework” makes it easy
to add things to child tables:

• Constraints
• Triggers
• Column settings (default, storage,

statistics)

The framework also allows you to exclude
certain child tables

Inheritance Framework

37

The framework
• Identifies parent and child table

relationships
• Decides if an object should not be

applied to a specific child
• Uses a template and provided data to

create a SQL statement for each child
table

• Creates the required object if it doesn't
exist

Inheritance Framework

38

Inheritance Framework:
Tags and Templates

(Tag, you're it!)

The framework supports the following tags:
• %parent_schema%

Schema parent table is in
• %parent_name%

Name of parent table
• %parent_full%

Full name (schema.name) of parent
• %child_schema%
• %child_name%
• %child_full%

Inheritance Framework: Tags

41

The templates are stored in
inheritance.object_types:

SELECT object_type, template, reset_template FROM inheritance.object_types;

-[RECORD 1]--+--

object_type | trigger

template | CREATE TRIGGER %object_name_template% %object_body_template%

reset_template | DROP TRIGGER %object_name_template% ON %child_full%

-[RECORD 2]--+--

object_type | constraint

template | ALTER TABLE %child_full% ADD CONSTRAINT %object_name_template% %object_body_template%

reset_template | ALTER TABLE %child_full% DROP CONSTRAINT %object_name_template%

-[RECORD 3]--+--

object_type | column set

template | ALTER TABLE %child_full% ALTER %object_name_template% SET %object_body_template%

reset_template | ALTER TABLE %child_full% ALTER %object_name_template% DROP %object_body_template%

Inheritance Framework: Templates

42

Inheritance Framework:
In action!

Each object has a name tag and a body tag:

ALTER TABLE %child_full%
 ADD CONSTRAINT %object_name_template%
 %object_body_template%

SELECT inheritance.child_object__add(
 name of parent table
 , type of object (from object_types table)
 , object_name_template
 , object_body_template
);

Inheritance Framework

44

Add a primary key:

SELECT inheritance.child_object__add(
 -- Name of parent
 'payment_instruments.payment_instruments'
 -- Type of object
 , 'constraint'
 -- object name template
 , '%child_name%__pk_payment_instrument_id'
 -- object body template
 , 'PRIMARY KEY(payment_instrument_id)'
);

Inheritance Framework

45

When you call this:
SELECT inheritance.child_object__add(
 'payment_instruments.payment_instruments'
 , 'constraint'
 , '%child_name%__pk_payment_instrument_id'
 , 'PRIMARY KEY(payment_instrument_id)'
);

You get this:
\d payment_instruments.debit_card
 "debit_card__pk_payment_instrument_id"

PRIMARY KEY, btree (payment_instrument_id)

Inheritance Framework

46

Trigger:
SELECT inheritance.child_object__add(
 'payment_instruments.payment_instruments'
 , 'trigger'
 , '%child_name%__dupe_id'
 , $$BEFORE INSERT OR UPDATE ON %child_full%

FOR EACH ROW EXECUTE PROCEDURE
tg_payment_instruments_unique()$$

);

debit_cards__dupe_id BEFORE INSERT OR UPDATE
ON payment_instruments.debit_cards

 FOR EACH ROW EXECUTE PROCEDURE
tg_payment_instruments_unique()

Inheritance Framework

47

Column SETing (and an excluded table):
SELECT inheritance.child_object__add(
 'payment_instrument.payment_instrument'
 , 'column set'
 , 'customer_id'
 , 'NOT NULL'
 -- Table(s) to EXCLUDE from this object (may be an

array)
 , 'payment_instrument.bank_account'
);

\d payment_instrument.bank_account
 customer_id | integer |
\d payment_instrument.debit_card
 customer_id | integer | not null

Inheritance Framework

48

API: Add objects to
inheritance.child_objects

\df inheritance.
child_object__add(parent, type, name, body

[, excluded])

child_object__add_excluded_tables(child_object_
id, excluded)

child_object__add_excluded_tables(parent, type,
name, excluded)

child_object__remove_excluded_tables(child_obje
ct_id, excluded)

child_object__remove_excluded_tables(parent,
type, name, excluded)

Inheritance Framework

49

API: Process tables

Process a single child:
process_child(child_table)

Process all children of a parent:
process_children(parent_table)
 Returns setof child table names

Process everything (beware of locking!):
process_all()
 Returns setof child table names

Inheritance Framework

50

API: Reset an object

Used when you want to remove an inheritance objects
from a child or children. Does NOT remove anything
from inheritance.objects, so a subsequent
process*() call will put everything back.

reset_child(child_table, object_type)

reset_children(parent_table, object_type)
 returns setof child table names

Inheritance Framework

51

Reset example:

Change	
 a	
 trigger	
 from	
 being	
 BEFORE	
 to	
 AFTER

SELECT * FROM
 reset_children('parent', 'trigger');

UPDATE inheritance.child_objects
 SET object_body_template = regexp_replace(
 object_body_template, 'BEFORE', 'AFTER')
 WHERE …

SELECT * FROM
 process_children('parent');

Inheritance Framework

52

Whew!

Questions?

If you act now, we'll throw in
METACODE, a $19.95 value, for

ABSOLUTELY NOTHING!

It would be difficult to write completely generic
triggers to support our fake unique
constraints and foreign keys.

It's easier to create a generic TEMPLATE for
those triggers, and use TAG replacement to
create trigger functions that are tailored for
each specific inheritance structure.

(If you were able to stay awake in the last section, this should
all sound very familiar ;P)

Metacode

55

code.inheritance_unique(
 schema

Schema that the parent (inherited) table is in. The
trigger funciton will be created in this schema as
well

 , parent_table
Parent table of inheritance chain

 , primary_key
Primary key field of the parent table (only single
field keys for now)

);

Metacode

56

code.inheritance_unique creates a trigger
function that checks to see if NEW.
{primary_key} already exists in the parent
table

Note that there's race conditions a mile
wide here, but as long as you're using a
SINGLE sequence to drive your primary
key across all children (and the parent),
you should be OK.

Metacode

57

Usage:

code.inheritance_unique('payment_instruments',
'payment_instruments', 'payment_instrument_id');

inheritance.child_object__add(
 'payment_instruments.payment_instruments'
 , 'trigger', '%child_name%__dupe_id'
 , $$BEFORE INSERT OR UPDATE ON %child_full%
 FOR EACH ROW EXECUTE PROCEDURE
 tg_payment_instruments_unique()
 $$
);;

Metacode

58

code.inheritance_ri(
 schema
 , parent_table
 , primary_key
 , type_plural
 , type_singular
 , table_name_field
 , child_name_prefix
 , child_name_suffix
);

Metacode

59

schema, parent_table and primary_key are what you'd
expect

type_plural and type_singular refer to the table that
contains “type” information (thank Rails for the
plural/singular sillyness)

table_name_field is the field in the type table that gives
you the name of the table that contains records of that
type

child_name_prefix and child_name_suffix are added to
the data table_name_field. Default to '%schema%'
and 's'.

Metacode

60

Example:
code.lookup_table_static(
 'payment_instruments', 'payment_instrument_types',

'payment_instrument_type'
 , ', child_table text'
);
Table "payment_instruments.payment_instrument_types"
 Column | Type | Modifiers
-------------------------+----------+-----------
 id | smallint | not null
 payment_instrument_type | text | not null
 description | text |
 child_table | text |

Metacode

61

INSERT INTO payment_instrument_types
VALUES

 (1, 'bank_account', 'bank_account')
 , (2, 'debit_card', 'debit_card')
CREATE TABLE payment_instruments.
payment_instruments(
 payment_instrument_id int

 NOT NULL DEFAULT
 nextval('payment_instrument_id_seq'

 , payment_instrument_type_id smallint
);

Metacode

62

Fortunately, there's actually some
documentation...

SELECT * FROM code.functions;

Metacode

63

Code will (hopefully) be
available on pgFoundry; search

for enova-tools.

Use the forum or mailing list

OK, OK! I'll shut up now!

Questions?

Want to get paid to work with this cool
stuff? Send me your resume!
jnasby@enovafinancial.com

	Title
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65

