
An introduction to programming with
libpqxxobject

Version 0.1.0

Roger Leigh
rleigh@debian.org

22nd May 2004

Contents

1 Introduction 1
1.1 What is libpqxxobject . 1
1.2 Legal bit . 2

2 libpqxxobject fundamentals 2

3 Using libpqxxobject 3
3.1 Setting up the database . 3
3.2 Source code . 3
3.3 Place class . 4
3.4 PlaceTable class . 4
3.5 Putting it all together . 5

4 Going further 5

5 Further Reading 6

List of Tables

1 places table structure. 3

1 Introduction

1.1 What is libpqxxobject

libpqxxobject is an extension to the libpqxx library, a C++ object-oriented in-
terface to the PostgreSQL ORDBMS. While libpqxx provides objects for con-
necting to a database, transactions (executing queries) and result sets, the
programmer still needs to use these objects directly in his code.

While developing a large application, I realised that I needed the database
access to be rather more transparent than this: I wanted my classes to be able

1

2 LIBPQXXOBJECT FUNDAMENTALS 2

to interact with the database “behind the scenes”, so that other programmers
might use them without any need to know or understand SQL. In addition,
I wanted to ensure consistency, so that slightly different (incorrect) queries
would never be run at different places in the program following a change,
and control, by restricting which database operations could be performed.

So, what does libpqxxobject actually do? In short, it encapsulates the
database tables and rows as native C++ classes, so a programmer may do
complex database work without even needing to know he is using a database.

1.2 Legal bit

This tutorial document, the source code, and all other files distributed in the
source package are copyright c© 2003-2004 by Roger Leigh. These files are free
software; you can redistribute them and/or modify them under the terms of
the project licence. A copy of the BSD-compatible licence used is provided in
the file COPYING in the source package this document was generated from.

2 libpqxxobject fundamentals

For each database table (or related set of tables), two classes are created:

1. A row class, representing a row in the table (or result set).

2. A table class, representing an entire table.

The row template class holds the information about all the columns in a
single row, and has methods to get the data for each column and set the data
for each column. This can be used to restrict access, for example to prevent
modification of primary keys. In addition, virtual methods are provided to
insert, update, erase and refresh rows (these correspond to INSERT, UPDATE,
DELETE and SELECT queries), and should be overridden where required (the
default is to do nothing).

The table template class “contains” the rows. It has methods for performing
various database operations. These include various SELECT queries, defined
as class methods, used to retrieve all or part of the table, or even individual
rows. Rather than returning a result set, they return single or multiple row
objects. In addition, methods are provided for all tables which wrap INSERT,
UPDATE, and DELETE queries.

Using these two classes, it is possible to create or find row objects, ma-
nipulate them as needed and then insert into, update, or delete them from
the database table. The table class is optional–it exists to provide a consistent
interface for running queries, but isn’t strictly required to insert, update and
delete rows.

In addition, a field template class is provided to use within a row class. Its
purpose is to contain a field value (a column value in a row).

That’s all there is to it. libpqxxobject doesn’t do anything you couldn’t do
yourself with libpqxx. What it provides are some classes to make this easier
for you and, perhaps more importantly, gives all your classes a consistent
interface.

3 USING LIBPQXXOBJECT 3

Name Type Constraints Description
id serial PRIMARY KEY Primary key
name text UNIQUE NOT NULL Place name
gridref text NOT NULL OS grid reference

Table 1: places table structure.

3 Using libpqxxobject

It’s not immediately obvious how to use the classes and template classes
libpqxxobject provides. This is because most of them are not intended to be
used directly: you derive your own classes from them.

To illustrate how it all fits together, this directory contains an example
database and a program which uses the database using libpqxxobject.

3.1 Setting up the database

The example database structure is contained in the file places.sql, together
with some sample data. Install the database using the following command (it
requires a PostgreSQL installation with the postmaster running and CREATE
DATABASE privilege):

$ psql -d template1 -f places.sql

The database created (called libpqxx object tutorial) contains a table
called places. It’s structure is shown in Table 1.

Our row class, representing a single row in this table, allows access to
all these fields, with the exception of altering the id number, which is set by
the backend database. If modification were allowed, unnecessary transaction
failure could result.

The UNIQUE constraint on the name field isn’t strictly necessary (there can
be more than one place with the same name in reality), but is useful for the
purposes of this tutorial.

3.2 Source code

The source code for the examples in the following sections is in the files
places.cc, places.h and places-main.cc. Once you have run the configure
script in the top-level directory, type make to build everything.

The places-doc subdirectory contains the Places API reference, gener-
ated from comments in the source1. Also take note of the libpqxxobject API
reference in the top-level doc/pqxxobject directory.

The following sections explain what each part of the source code does,
and why.

1If you aren’t using it already, consider this an example of why you should be using a tool
like Doxygen to document your code.

3 USING LIBPQXXOBJECT 4

3.3 Place class

The Place class is the row class. It represents a single row of the places
table. This is a normal C++ class, which is derived from pqxxobject::row
(and hence also pqxxobject::row base). It merely stores the column data for
a single row, and also provides methods to insert, update, delete and refresh
the row data (using libpqxx).

Methods are provided to get the column data for all three columns. Meth-
ods are provided to set the data for the name and gridref columns. The id
column data cannot be changed; this is allocated by the database when a row
is inserted, and is effectively read-only.

3.4 PlaceTable class

The places database table is represented by the PlaceTable class. This
provides all the operations you can perform on a table: selecting rows, and
inserting, updating, and deleting rows.

class PlaceTable : public pqxxobject ::Table <Place >

{

public:

PlaceTable(pqxxobject :: transaction & tran);

virtual ~ PlaceTable ();

enum sort_order

{

ORDER_ID ,

ORDER_NAME ,

ORDER_GRIDREF

};

row_list_ptr get_list(sort_order order = ORDER_NAME);

row_ptr find(int place_id);

row_ptr find_name(const std:: string & name);

row_list_ptr find_gridref(const std:: string & gridref);

}; / / c l a s s P l a c e T a b l e

PlaceTable is derived from pqxxobject::Table, a class template. The
template parameter is the row, in this case is Place.

The constructor requires a reference to a pqxxobject::transaction trans-
action object since we are going to be doing database work). This object en-
capsulates a pqxx::connection and pqxxobject::transaction, and provides
facilities for recursive object serialisation.

Methods are provided to perform various SELECT queries:

• get list() gets all rows, sorted according to the sort order specified.

• find() gets the row with the corresponding id number.

• find name() gets the row with the corresponding name.

• find gridref() gets the rows with the corresponding gridref.

These return either a row ptr or row list ptr. These are classes based on
std::auto ptr which are defined by the pqxxobject::table base class. This
allows for safe allocation and deletion of row objects, providing the usual
caution is kept when using std::auto ptr

4 GOING FURTHER 5

namespace pqxxobject

{

template <typename _Row ,>

class table : public Transaction

{

public:

/ / / The t y p e o f t h e row t h e t a b l e c o n t a i n s .
typedef Row row_type;

typedef typename Row:: row_ptr row_ptr;

typedef std::list <Row > row_list;

typedef std::auto_ptr <row_list > row_list_ptr;

protected:

table(pqxxobject :: transaction & tran);

public:

virtual ~ table ();

virtual void insert(row_type & row)

{ row.insert(m_transaction); }

virtual void update(row_type & row)

{ row.update(m_transaction); }

virtual void erase(row_type & row)

{ row.erase(m_transaction); }

virtual void refresh(row_type & row)

{ row.refresh(m_transaction); }

virtual row_ptr find_one(const std:: string & query);

virtual row_list_ptr find_many(const std:: string & query)

pqxxobject :: transaction & m_transaction;

}; / / c l a s s t a b l e
}; / / n ame spa c e p q x x o b j e c t

The base class pqxxobject::table provides generic insert(), update()
and erase() functions. (erase() is not called delete for hopefully obvi-
ous reasons.) Notice how they are simple wrappers around the row class.
The functions find one() and find many() are used by our SELECT methods.
Since they are templated, they know which row type to return.

3.5 Putting it all together

The file places-main.cc is a driver program to show our Places class in
action. It opens a database connection, creates a PlaceTable object and then
runs various SELECT queries followed by an INSERT, UPDATE, and DELETE. The
code is commented, to show what is happening.

Run the program like so:

$./places

You should see the results of all the actions displayed (page with more or less
to view it all). Any errors should cause an exception to be thrown, which will
be caught and displayed before the program exits.

4 Going further

The wrapping of simple rows and tables is (I hope) fairly simple, if a little
long-winded. This should be easy to speed up if you create some template

5 FURTHER READING 6

files with skeleton header and source (perhaps derived from places.h and
places.cc).

There are more complex situations, such as where it doesn’t make sense
for a row of a table to exist as an object in its own right. For example,
if we have a accounts table, holding account information, and then have
customer accounts and staff accounts which reference it, we could say
that a customer acount is an account (i.e. the relationship could be expressed
through inheritance).

In this case, we could create an Account row class and an AccountTable
table class. When we come to the CustomerAccount class, this can derive from
the Account class like so:

class CustomerAccount : public Account

{

CustomerAccount(const Account & account);

}; / / c l a s s Cus t omerAccoun t

How would we implement the convert impl() function? Simple: we
initialise the base class by calling its convert impl() method, from within
our convert impl() method. This could have implications on your SELECT
query design). I would recommend creating views to simplify your code:
this can handle making the column names unique and can also automate the
joins.

Now, how about handling database changes? This is also straightforward:
in your insert impl(), update impl() and erase impl() row methods, del-
egate the work to the appropriate row methods in the base class (or contained
object if using containment rather than inheritance).

The beauty of using inheritance in this way is that the database relations
are expressed while using the row objects. You can pass a CustomerAccount
to any method requiring an Account, so having the row represented as a C++
object does pay off.

Have Fun!
Roger Leigh

5 Further Reading

The libpqxx library includes a Doxygen-generated API reference, and the code
in the test-suite (in the test subdirectory of the libpqxx source) provides
useful examples of how to use libpqxx. You’ll need to understand how to
use the pqxx::connection, pqxx::transaction and pqxx::result objects in
order to use libpqxxobject. libpqxx also includes a very good tutorial, which
I highly recommend.

The PostgreSQL database documentation will come in handy if you’re
administering PostgreSQL. There’s also an SQL command reference and the
libpq API reference is also useful (since libpqxx wraps it).

	Introduction
	What is libpqxxobject
	Legal bit

	libpqxxobject fundamentals
	Using libpqxxobject
	Setting up the database
	Source code
	Place class
	PlaceTable class
	Putting it all together

	Going further
	Further Reading

